The best possible Lehmer mean bounds for a convex combination of logarithmic and harmonic means

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

We find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} C(a,b)+(1-alpha_{1} )H(a,b)

متن کامل

optimal convex combinations bounds of centrodial and harmonic means for logarithmic and identric means

we find the greatest values $alpha_{1} $ and $alpha_{2} $, and the least values $beta_{1} $ and $beta_{2} $ such that the inequalities $alpha_{1} c(a,b)+(1-alpha_{1} )h(a,b)

متن کامل

Optimal Bounds for Neuman–sándor Mean in Terms of the Convex Combination of Logarithmic and Quadratic or Contra–harmonic Means

In this article, we present the least values α1 , α2 , and the greatest values β1 , β2 such that the double inequalities α1L(a,b)+(1−α1)Q(a,b) < M(a,b) < β1L(a,b)+(1−β1)Q(a,b) α2L(a,b)+(1−α2)C(a,b) < M(a,b) < β2L(a,b)+(1−β2)C(a,b) hold for all a,b > 0 with a = b , where L(a,b) , M(a,b) , Q(a,b) and C(a,b) are respectively the logarithmic, Neuman-Sándor, quadratic and contra-harmonic means of a ...

متن کامل

Optimal Lower Power Mean Bound for the Convex Combination of Harmonic and Logarithmic Means

and Applied Analysis 3 Alzer and Qiu 27 found the sharp bound of 1/2 L a, b I a, b in terms of the power mean as follows: Mc a, b < 1 2 L a, b I a, b 1.8 for all a, b > 0 with a/ b, with the best possible parameter c log 2/ 1 log 2 . The main purpose of this paper is to find the least value λ ∈ 0, 1 and the greatest value p p α such that αH a, b 1 − α L a, b > Mp a, b for α ∈ λ, 1 and all a, b ...

متن کامل

Optimal One–parameter Mean Bounds for the Convex Combination of Arithmetic and Logarithmic Means

We find the greatest value p1 = p1(α) and the least value p2 = p2(α) such that the double inequality Jp1 (a,b) <αA(a,b)+(1−α)L(a,b) < Jp2 (a,b) holds for any α ∈ (0,1) and all a,b > 0 with a = b . Here, A(a,b) , L(a,b) and Jp(a,b) denote the arithmetic, logarithmic and p -th one-parameter means of two positive numbers a and b , respectively. Mathematics subject classification (2010): 26E60.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematical Forum

سال: 2013

ISSN: 1314-7536

DOI: 10.12988/imf.2013.37135